
Some Properties 

of Equilateral Triangles 

(With a brief introduction to techniques commonly used 

in mathematical proofs) 

During the previous class, some of you asked me two important questions: 

 Can we use geometry to derive formulas for areas and volumes of ob-

jects?  

 How can we know whether a formula for, say, the area of a triangle, is 

true for every triangle of the same type? 

The second question is especially good: it goes to the heart of mathematics, 

and of reality itself. A branch of philosophy called epistemology is dedicated 

to such questions. We don’t have space here to give that question the atten-

tion that it deserves, but we can, with benefit, present some of the general 

ideas. Why not do so as we derive formulas for some properties of equilat-

eral triangles? 

Regarding the assumptions that are common  

in mathematical proofs 

Some students are surprised to learn that all mathematics is based upon 

assumptions, most of which are given impressive names like “postulates” or 

“axioms”. The truth is that it’s impossible to reason without making certain 

assumptions. At a minimum, one must assume one’s own existence.  

To derive formulas for areas and volumes of geometrical shapes, we 

must assume much more. First, we assume that these objects “exist” in 

some sense. (See note in the margin about realism and idealism.) The idea 

that characteristics such as length, area, and volume can be expressed by 

means of numbers is also based upon assumptions. So is the idea that these 

characteristics are related through mathematical operations. (I’ll leave out the 

details.) 

There’s no denying that our everyday experiences show that arithmetic 

and geometry can predict, often with considerable precision, that which oc-

curs in the world of physical objects. However, those experiences do not 

prove that the assumptions behind the mathematics are true.  

When deriving formulas, we must be careful to list our assumptions, un-

less we are certain that they will be well known to our readers. Otherwise, we 

risk miscommunicating with them (and committing errors ourselves). To 

make communication easier, mathematicians give names to the assumptions 

that that are used most frequently. The two assumptions that interest us most 

in this document are known as The Rule of Universal Specification and The 

Rule of Universal Generalization:  

The Rule of Universal Specification 

This rule is obvious, but we do need to state it. For our purposes, it says 

that if all objects of a certain type have a certain property, then each ob-

ject of that type has that property. Here are two examples:  

All humans are mortal. Fred is human. Therefore, Fred is mortal.  

Two philosophical doc-

trines: Realism and 

idealism 

Realism says that there is a 

“real world” of objects that exist 

whether someone is there to 

observe them or not.  

In contrast, idealism says, in 

effect, that the “world” is a 

creation of our minds. 

Most scientists take realism 

for granted, without recognizing 

that a fundamental question is 

involved. 
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All equilateral triangles have three equal angles. The triangle shown 

below is equilateral.  

 
Therefore, it has three equal angles. 

 

The Rule of Universal Generalization 

This rule is not easily stated. For our purposes, it says that if we can 

show that a formula must be true for any object chosen at random from a 

class, then the formula must be true for all objects that belong to that 

class. What does “chosen at random” mean? We can best answer that 

question by using this rule in a derivation. 

Derivations of formulas for properties  

of equilateral triangles  

When we begin to work on any problem, it’s good to ask ourselves  

What do we want?
1
 

In our case, that’s a good question. No one is making us investigate the 

properties of equilateral triangles; it’s something that we decided to do for our 

own reasons. We can look at whatever properties we might wish, or that 

appear to be worth our time. 

How about if we derive an equation that communicates the relationship 

between an equilateral triangle’s height and the length of its edges? How 

should we get started?  

A good piece of advice is  

Any time you work on a problem in mathematics, draw a diagram that will 

help you see what’s going on.
2
 

So, let’s draw an equilateral triangle.  

                                                             
1
 This suggestion comes from my favorite math book: Thinking Mathematically J. 

Mason, L. Burton, and, K. Stacey. It’s available in Spanish as Como razonar ma-
tematicamente from the publisher TRILLAS (ISBN-10: 607171544X, ISBN-13: 978-
6071715449). 
2
 A suggestion attributed to Alan Schoenfeld of the University of California, Berkeley 

What do we want? 

We want an equation that 

communicates the relationship 

be-tween an equilateral trian-

gle’s height and the length of 

its edges. 
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Now, what do we mean by the “height” of a triangle? A good definition is 

found in the Everyday Mathematics
3
 glossary: 

 

Because all three sides of an equilateral triangle are identical, the 

heights from all three sides are the same. To be a little different, why not use 

the one shown on the next page? 

                                                             
3
 No title given: available online at 

http://www.wrightgroup.com/download/em/emglossary.pdf (retrieved 6 March 2012). 
© 1998 Everyday Learning Corporation. 

http://www.wrightgroup.com/download/em/emglossary.pdf
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Now, let’s go back now to our question, 

What do we want? 

Our answer was 

We want an equation that communicates the relationship between an 

equilateral triangle’s height and the length of its edges. 

Thanks to our diagram, we can make that answer more specific: 

We want an equation that communicates the relationship between the 

length of segment 𝐵𝐷̅̅ ̅̅  and (for example) of 𝐴𝐵̅̅ ̅̅ . 

To make things a little more convenient, we can follow another good piece of 

advice: 

Ask yourself, “What can I introduce?” 

Sometimes, we might find it useful to “introduce” (or, “add”) another line 

to a drawing. One of my own weaknesses in solving problems is that I don’t 

do this often enough. Another thing that’s often useful to “introduce” is a set 

of symbols to represent lengths, areas, or whatever other quantity might be 

involved in our problem. Let’s do that now: 
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To continue, let’s follow a third piece of good advice: 

Ask yourself, “What do we know?” 

One thing we know is that segment point D divides segment 𝐴𝐶̅̅̅̅  in half. Let’s 

add that information to our diagram. 

 

We also know that ADB and CDB are right triangles. We know that the 

Pythagorean Theorem is true for all right triangles. To shorten this derivation, 

I’ll just say that 𝐴𝐵̅̅ ̅̅  is the hypotenuse of ADB, so 

(𝐵𝐷)2 + (𝐴𝐷)2 = (𝐴𝐵)2 . (1) 

Now, we’ll substitute a for AB, h for BD, and 
a

2
  for AD. With these 

substitutions, Equation (1) becomes 

(ℎ)2 + (
𝑎

2
)

2

= (𝑎)2. 

Define 

a = Length of the triangle’s sides. For ex-

ample, of 𝐴𝐵̅̅ ̅̅ . 

h = Length of 𝐵𝐷̅̅ ̅̅ . 

How do we know that 

point D divides 𝑨𝑪̅̅ ̅̅  in 

half, and that triangles 

ADB and CDB are right 

triangles? 

We won’t answer those ques-

tions here. They’re good things 

to investigate outside of class. 
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Let’s stop here to notice that we’ve achieved our goal: we now have an 

equation that communicates the relationship between the height (h) of an 

equilateral triangle and the length of its sides (a). However, we should look 

for ways to make our equation simpler. For example, by combining the terms 

in which a appears: 

(ℎ)2 + (
𝑎

2
)

2

= (𝑎)2. 

(ℎ)2 + (
𝑎

2
)

2

− (
𝑎

2
)

2

= (𝑎)2 − (
𝑎

2
)

2

  

ℎ2 = 𝑎2 −
𝑎2

4
  

ℎ2 =
3

4
𝑎2 . 

This result isn’t bad, but we should probably simplify it even more by taking 
the square root of both sides: 

√ℎ2 = √
3

4
𝑎2  

ℎ = 𝑎
√3

2
,  or equivalently,  ℎ =

𝑎√3

2
. 

We now have the sort of equation that we wanted, and in a convenient 
form. To check our work, we should measure h and a in our drawing, 

calculate the value of 𝑎
√3

2
, and see whether it’s equal to h.  

We should also try to see whether the formula makes sense. For 

example, what happens to h when the triangle gets bigger? That is, if a gets 

bigger, what should happen to h? We know that the bigger the triangle, the 

greater its height. Is that what the formula predicts? On the other hand, what 

if the triangle shrinks until it becomes a point? In that case, the height 

becomes zero. Does the formula predict that result? 

I promised that we’d see how to use The Rule of Universal Generaliza-

tion and The Rule of Universal Generalization in this derivation, so you’re 

probably wondering what happened to them. The truth is that we used those 

rules without saying so. We really should not have done that, so let’s present 

an improved derivation, pointing out where those rules are used. All we need 

to do is add a few statements to the work we’ve already done. In the table 

that follows, comments written in blue italics are explanatory: they’re not 

part of the derivation. 
  

Always look for ways to check 

the formulas that you derive. 

Now, finally, we show where we 

used 

The Rule of Universal Gener-

alization and The Rule of 

Universal Generalization. 
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Improved derivation 

Comments on each statement  

in our improved derivation 

Let T, arbitrary, be an equilateral 

triangle. 

This is just a fancy way of saying, “Imag-

ine any old equilateral triangle, and call it 

T.” 

Let a be the length of T’s sides. 

Here, we use The Rule of Universal 

Specification several times. As is usually 

the case, we don’t say that we’re using it; 

we just do it.  

All equilateral triangles share certain 

properties, and since T is an equilateral 

triangle, it has all of them.  

One of the properties that let us make the 

statement at the left is that the sides of an 

equilateral triangle are segments of equal 

length.  

All line segments, in turn, share certain 

important properties. Therefore, the seg-

ments that form T have those properties. 

One of those properties is that the length 

of a segment can be expressed as a non-

negative number.
4
 

IMPORTANT: We make no other as-

sumptions about T or a. Especially, we 

don’t assume a value for a. 

Now we make all of the statements 

that led us to our equation  

ℎ = 𝑎
√3

2
. 

Again, we use The Rule of Universal 

Specification without saying so. 

Like all non-negative numbers, we can 

multiply a, divide it, etc. 

Because T was an arbitrary equi-

lateral triangle, we can conclude 

that our formula is correct for all 

equilateral triangles. 

(End of derivation.) 

We are allowed to make this statement by 

The Rule of Universal Generalization. In 

deriving our equation, we assumed only 

that T had those properties that are com-

mon to all equilateral triangles. In other 

words, the assumption that T has only 

those properties leads to the conclusion 

that  

𝒉 = 𝒂
√𝟑

𝟐
 . 

Therefore, we may conclude that this 

equation is true for all equilateral trian-
gles. 

                                                             
4
 Conversely, every number can be represented as a line segment of appropriate 

length. Therefore, given any number x, there exists (at least in our minds!) an equilat-
eral triangle with sides of length x. Although these ideas are taught as though they 
were obvious, they are quite subtle, and mathematicians did not manage to put them 
on solid footings until about 150 years ago. 

For your convenience, 

the “Universal Rules” 

are presented again 

here: 

The Rule of Universal 

Specification 

If every object of a certain 

type has a certain property, 

then each object of that 

type has that property. 

The Rule of Universal 

Generalization 

If we can show that a for-

mula is true for an object 

chosen at random from a 

class, then the formula is 

true for all objects that 

belong to that class. 
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Unfortunately, statements like the last one are usually left out of deriva-

tions and proofs, even in calculus-level textbooks. Most students never learn 

that we may make such conclusions, or what we must do in our derivations in 

order for us to employ The Rule of Universal Generalization.  

I never learned of that Rule, or its use, until I studied techniques of for-

mal proofs—at age 50! However, I believe that it can be taught successfully 

to elementary-school students. 

We’ve now seen that we can indeed use geometry to derive equations 

(formulas) relating properties of figures. We’ve also seen  

 How we “know” that those formulas are correct for all figures of 

the sort for which they were derived.  

 That that “knowledge” is based upon an assumption called The 

Rule of Universal Generalization. 

To tie up some loose ends, let’s note that our derivation of the equation  

ℎ = 𝑎
√3

2
  

was done correctly according to all the customs and rituals of that strange 

group of people called Mathematicians. Therefore, we can now add that rela-

tionship between height and length of sides to our list of properties common 

to all equilateral triangles.  

Now, when we have to find the height of a given equilateral triangle, for 

example this one: 

 

we can say, “All equilateral triangles have the property that the height is  
√3

2
  

times the length of the side, so that relation must be true for our triangle. 

Therefore, the height of our triangle is (5 meters) times  
√3

2
,  or about 4.33 

meters. (Try it!) 

One thing that’s especially important to remember about this formula 
(and all others) is that it tells us a relationship between numbers. Specifically, 

it tells us that the number that expresses the height is equal to 
√3

2
 times the 

number that expresses the length of the sides. Therefore, if we know the 
height of an equilateral triangle, and wish to know the length of its side, we 
can do so by solving  
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ℎ = 𝑎
√3

2
  

for a: 

ℎ = 𝑎
√3

2
  

𝑎
√3

2
= ℎ  

𝑎
√3

2

√3

2

=
ℎ

√3

2

  

𝑎 = ℎ (
2

√3
)  

𝑎 = (
2√3

3
) ℎ . 

Note that we did not have to “start from scratch” to derive this equation. That 
is, we didn’t have to go back to our arbitrary triangle T. Having obtained the 
equation  

ℎ = 𝑎
√3

2
 , 

and having said that a and h are non-negative numbers, we could transform 
that equation in any way we chose, as long as our transformations respected 
the properties of numbers and of equalities. In fact, that’s the process by 
which we transformed the equation that we got directly from the Pythagorean 
Theorem,  

(ℎ)2 + (
𝑎

2
)

2

= (𝑎)2. 

into the more-useful form 

ℎ = 𝑎
√3

2
 . 

Of course, we should now test our formula on an equilateral triangle: 

 

End 

Is length of the sides equal 

to height times  
𝟐√𝟑

𝟑
 ? 

These transformations are purely 

“formal”. That is, they just 

manipulate symbols according 

to the laws of algebra. Those 

rules are the same whether the 

formula deals with heights of 

triangles, or navigation of 

spacecraft. Why do those trans-

formations give formulas that 

are correct in both cases? No 

one knows. 


